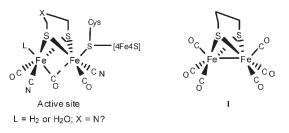
Inorganic Chemistry

An Oxidized Active Site Model for the FeFe Hydrogenase: Reduction with Hydrogen Gas

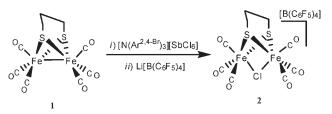

Steven L. Matthews and D. Michael Heinekey*

Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States

Supporting Information

ABSTRACT: Models for the oxidized form of the FeFe hydrogenase active site have been prepared. These cationic complexes contain two iron atoms, carbonyl ligands, a propanedithiolate bridge, and one other bridging group. Reduction of these complexes with hydrogen gas is demonstrated.

Hydrogenase enzymes catalyze the oxidation of dihydrogen and the reduction of protons in nature. X-ray crystallography and IR spectroscopy of the FeFe hydrogenases have shown the active site to be comprised of a [2Fe2S] subunit linked to a [4Fe4S] cluster by a cystenyl-S bridge.^{1,2} The two iron atoms in the [2Fe2S] subunit are linked by a bridging dithiolate ligand and are ligated by the biologically uncommon ligands carbon monoxide (CO) and cyanide (CN^{-}) .³ Other features of the enzyme include channels for proton and gas transport and a chain of [4Fe4S] clusters for electron distribution.

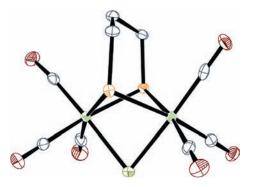


The crystal structure of $Fe_2(\mu - S_2C_3H_6)(CO)_6$ (1) has been reported; the structural resemblance to the active site of the FeFe hydrogenase was noted by Darensbourg and co-workers.⁴ A number of active site model complexes have been reported, including a very interesting Fe₂S₃ model system which mimics the active site with a pendant thioether moiety.⁵ In related work, electrocatalytic H₂ oxidation has been demonstrated at a graphite electrode impregnated with a NiFe hydrogenase.⁶ The efficiency of the electrocatalysis was comparable to Pt electrodes. A photocathode functionalized with an H-cluster analogue has also been demonstrated.^{7,8}

A number of reduced synthetic models of the FeFe hydrogenase are reported to react with acids to form dihydrogen.⁵ Several reports have described the reduction chemistry of 1. For example, Darensbourg et al. reported that the reduction of 1 led to hydrogen evolution in the presence of acetic acid.¹⁰ Pickett and co-workers reported hydrogen evolution from protic media catalyzed by complex 1 under reducing conditions.¹

Models for the oxidized form of the active site have been less studied. In contrast to facile and reversible reduction, CV shows that **1** is oxidized only with difficulty and irreversibly.¹² Advances in oxidation chemistry have been demonstrated in a phosphinecontaining system that reacts with hydrogen and silanes photochemically.¹³ In di-iron models with bridging hydride ligands, photochemical reactions with H₂ have been assayed by scrambling of D₂ to form HD.¹⁴ The chemical oxidation with halogens of complexes similar to 1 leads to Fe-Fe bond cleavage, but the products were not structurally characterized.¹⁵ Diferrous complexes resembling 1 have been prepared with cyanide and isonitrile ligands, but neither are reported to react with hydrogen.^{16,17} Some Fe(I) - Fe(II) mixed oxidation species have also been reported, including one example which reacts with hydrogen.¹⁸ Here, we report our studies of the chemical oxidation of 1, which afford well-characterized cationic diferrous species which can be reduced with hydrogen gas.

We find that the oxidation of 1 is cleanly achieved with $[N(Ar^{2,4\text{-}Br})_3][SbCl_6]$ in $CH_2Cl_2.$ Anion metathesis with Li $[B(C_6F_5)_4]$ in CH₂Cl₂ yields $[Fe_2(\mu-Cl)(\mu-S_2C_3H_6)(CO)_6]$ $[B(C_6F_5)_4]$ (2) as orange crystals in 78% yield (Figure 1).¹⁹



The infrared spectrum (KBr) of 2 in the carbonyl region indicates an oxidized species, with five bands at 2142, 2125, 2094, 2059, and 2046 cm⁻¹.

Complex 2 is diamagnetic; the 1 H NMR spectrum exhibits resonances for the propane dithiolate bridge at δ 2.46 (4H, t) and 1.90 (2H, quint). An X-ray diffraction study of 2 revealed an Fe-Fe distance of 3.005 Å, consistent with oxidation to a diferrous state and a loss of the Fe–Fe bond (Figure 1). The structure resembles diferrous dimers such as $[Fe_2(\mu-SMe)_3 (CO)_6$]⁺ (Fe–Fe distance 3.06 Å) and $[Fe_2(\mu-SMe)_3(CO)_4$ - $(PPhMe_2)_2]^+$ (Fe-Fe 3.07 Å)²⁰ but is longer than that observed in $Fe_2(\mu-S_2C_2H_4)(\mu-CO)(PR_3)_2(CN)_2(CO)_2(Fe-Fe 2.55 \text{ Å})$ and related dicationic species (Fe-Fe distances 2.49–2.63 Å).^{14,15} The Fe–Fe distance in 1 is 2.510 Å.⁴

Complex 2 does not react with $\mbox{Ag}^{\scriptscriptstyle +}$ or $\mbox{Na}^{\scriptscriptstyle +}$ salts at room temperature. Surprisingly, complex 2 fails to react with the

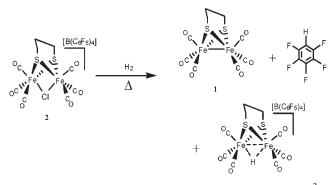
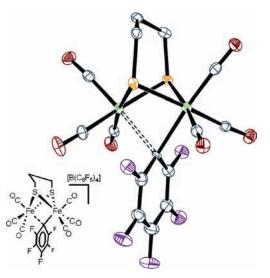

```
Received:
            May 6, 2011
Published: July 27, 2011
```


Figure 1. ORTEP diagram of **2**. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms and $B(C_6F_5)_4$ counterion omitted for clarity.

powerful chloride abstracting reagent $[Et_3Si][B(C_6F_5)_4]$. Reduction with the hydride donor LiHBEt₃ rapidly forms complex 1 with evolution of the hydrogen gas. Over the course of several hours at room temperature, the reaction of HSiEt₃ with complex 2 affords complex 1, accompanied by hydrogen evolution. Formation of ClSiEt₃ was confirmed by ²⁹Si NMR spectroscopy.


The reduction of complex **2** can be achieved with hydrogen. The heating of **2** in fluorobenzene to 70 °C under 1 atm of hydrogen gas results in reduction to **1** as well as the formation of C_6F_5H and small amounts (*ca.* 5%) of the previously reported cationic bridging hydride $[Fe_2(\mu-H)(\mu-S_2C_3H_6)(CO)_6]$ $[B(C_6F_5)_4]$.²¹

Repeating the reaction with D_2 gas and monitoring by ²H NMR spectroscopy led to the detection of the presence of DC_6F_5 and the cationic bridging deuteride. The presence of deuterium in the reaction products confirms that H_2 (D_2) is the reductant. The fluorobenzene solvent also incorporates deuterium in the course of this reaction, consistent with the fluorine substituent activating proton exchange.²²

The observation of C_6F_5H in the reduction reaction suggests that activation of the fluorinated tetraphenylborate counteranion has occurred. When **2** is heated in fluorobenzene under argon, a slow reaction takes place that can be inhibited by the addition of an atmosphere of CO gas. Reaction is complete after heating at 70 °C for 72 h. The ¹H NMR spectrum exhibits new propanedithiolate signals at δ 2.40 (4H, t) and 2.01 (2H, quintet). Layering with pentane yields red crystals of complex 3 (43% yield). Complex 3 exhibits IR bands (KBr) in the carbonyl region at 2117, 2082, and 2062 cm⁻¹, consistent with an oxidized species.

The structure was determined by X-ray diffraction and confirms the formulation as $[Fe_2(\mu-C_6F_5)(\mu-S_2C_3H_6)(CO)_6][B(C_6F_5)_4]$ (3). The Fe–Fe distance in 3 is 2.803 Å (Figure 2).²³ The bridging chloride ligand has been replaced with the C_6F_5 group that forms

Figure 2. ORTEP diagram of **3**. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms and the $B(C_6F_5)_4$ counterion omitted for clarity. A schematic diagram is included to elucidate the structure.

an asymmetric bridge between the iron atoms. The Fe-C distances observed are 2.188(2) and 2.318(3) Å.

Reactions of the $B(C_6F_5)_4$ anion are unusual; Reed et al. has reported boron–carbon bond cleavage in this anion under superacidic conditions.²⁴ This reaction is observed more commonly with tetrakis(bis-3,5-(trifluoromethyl)phenyl)borate anions.²⁵

Heating a sample of **3** under hydrogen gas gave the same product distribution as the hydrogen reduction of **2**, suggesting that **3** may be an intermediate in the reduction reaction. We propose that complex **3** is formed after the initial CO loss, consistent with inhibition by CO gas. The highly Lewis acidic pentacarbonyl fragment can react with the $B(C_6F_5)_4$ counterion or with H₂. Our data do not distinguish secondary hydrogenation of **3** from direct coordination of H₂ to the pentacarbonyl fragment derived from **2**. In both cases, a reaction with hydrogen gas ensues, resulting in overall reduction of the iron centers to Fe(I) (after deprotonation). Pentacarbonyl fragments derived from complexes **2** and **3** could resemble the structure of the oxidized H cluster.

Further studies are underway to detect dihydrogen intermediates in the reduction reaction and to employ less reactive counteranions.

ASSOCIATED CONTENT

Supporting Information. Experimental details and details of characterization of new compounds. X-ray crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: heinekey@chem.washington.edu.

ACKNOWLEDGMENT

This work was supported by the U.S. National Science Foundation.

REFERENCES

- (1) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853–1858.
- (2) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. *Structure* **1999**, *7*, 13–23.
- (3) Pierik, A. J.; Hulstein, M.; Hagen, W. R.; Albracht, S. P. J. *Eur. J. Biochem.* **1998**, 258, 572–578.

(4) Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Angew. Chem., Int. Ed. **1999**, 38, 3178–3179.

- (5) Razavet, M.; Davies, S. C.; Hughes, D. L.; Pickett, C. J. J. Chem. Soc., Chem. Commun. 2001, 847–848. George, S. J.; Cui, Z.; Razavet, M.; Pickett, C. J. Chem.—Eur. J. 2002, 8, 4037–4046. See also: Tard, C.; Pickett, C. J. Chem. Rev. 2009, 109, 2245–2274.
- (6) Jones, A. K.; Sillery, E.; Albracht, S. P. J.; Armstrong, F. A. J. Chem. Soc., Chem. Commun. 2002, 866–867.
- (7) Nann, T.; Ibrahim, S. K.; Woi, P.-M.; Xu, S.; Ziegler, J.; Pickett, C. J. Angew. Chem., Int. Ed. **2010**, 49, 1574–1577.
- (8) Vincent, K. A.; Parkin, A; Armstrong, F. A. Chem. Rev. 2007, 107, 4366.
- (9) For a summary of early work in this area, see: Darensbourg, M. Y.; Lyon, E. J.; Smee, J. J. Coord. Chem. Rev. **2000**, 206, 533–561.
- (10) Chong, D.; Georgakaki, I. P.; Meja-Rodriguez, R.; Sanabria-Chinchilla, J.; Soriaga, M. P.; Darensbourg, M. Y. J. Chem. Soc., Dalton Trans. 2003, 4158–4163.
- (11) Borg, S. J.; Behrsing, T.; Best, S. P.; Razavet, M.; Liu, X.; Pickett, C. J. J. Am. Chem. Soc. **2004**, 126, 16988–16999. Borg, S. J.; Bondin, M. I.; Razavet, M.; Liu, X.; Pickett, C. J. Biochem. Soc. Trans. **2005**, 33, 3–6.
- (12) Mathieu, R.; Poilblanc, R.; Lemoins, P.; Gross, M. J. Organomet. Chem. 1979, 165, 243–25.
- (13) Heiden, Z. M.; Zampella, G.; De Gioia, L.; Rauchfuss, T. B. Angew. Chem., Int. Ed. 2008, 47, 9756–9759.
- (14) Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Mejia-Rodriguez, R.; Chiang, C.-Y.; Darensbourg, M. Y. *Inorg. Chem.* **2002**, *41*, 3917–3928.
- Nehring, J. L.; Heinekey, D. M. H. Inorg. Chem. 2003, 42, 4288–4292.
 (15) Haines, R. J.; de Beer, J. A.; Greatrex, R. G. J. Chem. Soc., Dalton Trans. 1976, 1749–1757.
- (16) Boyke, C. A.; Rauchfuss, T. B.; Wilson, S. R.; Rohmer, M.; Bénard, M. J. Am. Chem. Soc. 2004, 126, 15151–15160.
- (17) Boyke, C. A.; van derVlugt, J. I.; Rauchfuss, T. B.; Wilson, S. R.; Zampella, G.; Giola, L. D. J. Am. Chem. Soc. **2005**, 127, 11010–11018.
- (18) Justice, A. K; Nilges, M. J.; Rauchfuss, T. B.; Wilson, S. R.; De Gioia, L.; Zampella, G. J. Am. Chem. Soc. 2008, 130, 5293–5301. Liu, T.; Darensbourg, M. Y. J. Am. Chem. Soc. 2007, 129, 7008–7009. Justice, A. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Intl. Ed. 2007, 32, 6152–6154.
- (19) CCDC 795047 contains the supplementary crystallographic data for complex **2**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
- (20) Schultz, A. J.; Eisenberg, R. *Inorg. Chem.* **1973**, *12*, 518–525. Jones, C. J.; McCleverty, J. A. *J. Chem. Soc., Dalton Trans.* **1975**, 701–704. Treichel, P. M.; Crane, R. A.; Matthews, R.; Bonnin, K. R.; Powell, P. *J. Organomet. Chem.* **1991**, *402*, 233–244.
- (21) Matthews, S. L.; Heinekey, D. M. Inorg. Chem. 2010, 49, 9746–9748.
 - (22) Eaborn, C.; Taylor, R. J. Chem. Soc. 1961, 2388-2393.
- (23) CCDC 795048 contains the supplementary crystallographic data for complex **3**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- (24) Reed, C. A.; Fackler, N. L. P.; Kim, K.-C.; Stasko, D.; Evans, D. R.; Boyd, P. D. W.; Rickard, E. F. *J. Am. Chem. Soc.* **1999**, *121*, 6314–6315.
- (25) Konze, W. V.; Scott, B. L.; Kubas, G. J. J. Chem. Soc., Chem. Commun. 1999, 1807-1808.

NOTE ADDED IN PROOF

Mild oxidation of a FeFe hydrogenase active site model has been shown to enhance reactivity with hydrogen: Camara, J. M.; Rauchfuss, T. B. *J. Am. Chem. Soc.* **2011**, *133*, 8098–8101.